论文部分内容阅读
提出了一种基于Gabor小波的多尺度PCA支持向量机人脸识别方法。该方法首先计算5个尺度和8个方向的Gabor小波变换结果,再把不同人脸中的同一尺度和方向的变换结果进行特征重组,得到40个新的特征矩阵,然后分别利用PCA降维去噪,最后构造40个支持向量机分类器并采用选票决策机制决定识别结果。实验结果表明,该方法不仅拓宽了主元分析法中累积方差贡献率可选范围,而且识别率受支持向量机核参数影响较小,使得支持向量机的核参数易于选择,同时取得了理想的识别效果。