论文部分内容阅读
支持向量聚类是基于支持向量机和核方法的一种新颖的聚类方法.与其它传统聚类方法相比较,该方法具有能得到全局最优解,并能处理任意形状的聚类,无需指定聚类数目,参数少,容易处理高维数据等优点.在原算法的基础上,在聚类标识阶段提出了改进算法,用支持向量代替原来的全部样本数据来进行标识,进一步减少运算时间,提高运算速度.