论文部分内容阅读
对土壤湿度进行的高质量时序预测对科学研究和农业生产实际都有重要的意义。利用无线传感器网络得到长时序观测数据,建立一种新的基于BP神经网络的土壤湿度时序预测方法。针对神经网络收敛速度慢、易陷入局部最优的问题,提出基于动量因子和自适应学习率的BP神经网络改进方法,并且利用粒子群算法优化BP神经网络的初始阈值和权值。针对标准粒子群算法(PSO)中惯性权重线性递减、学习因子取常数,而导致的PSO收敛速度慢、易错过全局最优解等问题,将迭代次数和适应度值相结合改进惯性权重和学习因子,有效提高算法找到全局最优解的