一种面向3D打印的点云快速重建算法

来源 :东华大学学报(自然科学版) | 被引量 : 0次 | 上传用户:gfdfh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用KinectFusion点云融合技术,探索三维重建技术与3D打印技术的结合性,设计并实现了一种面向3D打印的点云快速重建算法.首先使用手持型Kinect获取物体表面点云数据,使用八叉树存储数据,利用ICP(iterative closest point)算法进行点云配准与融合;然后采用基于统计异常值检测方法、随机抽样一致性算法(RANSAC)、移动最小二乘法等算法对点云数据进行后处理;再将处理后的点云数据进行三维表面重构并根据重心加入底座、支柱等缺失部位,以保持模型的平稳性;最后使用自制的三角洲打印机打印成型.试验结果表明,该算法实现了从实物到三维虚拟模型再到实物打印成型的整个过程,具有设备成本低、实现简单并且高效快速等特点.
其他文献
GEO卫星覆盖性能好,在WAAS、IRNSS、QZSS、EGNOS、BDS、CAPS等区域增强和区域导航系统中得到广泛应用。GEO卫星精密定轨及预报对高精度的导航和精密实时定位用户来说具有至关
大数据时代下迅速兴起的深度学习已在计算机视觉等多个领域取得了重大进展。近年来,随着软件制品的积累,这一方法也开始在软件工程领域发挥重要作用。概述了利用深度学习处理不