论文部分内容阅读
针对K-Means算法对于初始k值较敏感和容易过早收敛的问题,提出基于人工鱼群机制的K-Means聚类算法(NAFS)。首先,利用先验知识随机产生待求解问题的若干个聚类中心,组成一个鱼群环境;其次,利用鱼群个体的协作、竞争机制寻找满意的结果。鉴于人工鱼群算法后期容易陷入局部最优,根据鱼群聚集度引入小生境算法,改善种群的多样性,提高了算法的求解精度。在KDDCUP99数据集上的实验结果表明,该算法具有较高的聚类精度,适用于高维数据的聚类问题。