论文部分内容阅读
考虑的问题是二维粘性渠流.当雷诺数R→0和R→+∞时,讨论了Poiseuille流在定常的摄动下的上游特征值的渐近性质,结果表明,Wilson(1969)对该问题的下游特征值的分析也适用于上游的分析,且上游特征值的渐近结果与已有的Bramley和Dennis(1982)的数值结果是一致的.
The problem to consider is a two-dimensional viscous flow. When the Reynolds numbers R → 0 and R → + ∞, we discuss the asymptotic behavior of the upstream eigenvalues of Poiseuille flow under steady perturbation. The results show that Wilson (1969) also applies the analysis of the downstream eigenvalues of the problem In the upstream analysis, the asymptotic results of the upstream eigenvalues are consistent with the numerical results of the existing Bramley and Dennis (1982).