论文部分内容阅读
建立了外圆纵向磨削表面粗糙度的模糊基函数网络(FBFN)预测模型,网络的训练采用自适应最小二乘算法(ALS)。ALS将最小二乘算法和遗传算法相结合,能够自主学习,不用人为干预,FBFN和粗糙度的分析模型相结合,只需少量实验数据便可完成网络的训练,自动产生模糊规则,确定隐含层的节点数。仿真和实验结果表明,FBFN网络结构非常适合粗糙度的预测和控制,采用ALS学习方法比BP算法、传统的遗传算法和正交二乘法等能产生更好的结果。