论文部分内容阅读
用BP神经网络算法进行模式识别分类,即使对一个训练比较好的网络也极有可能出现样本的导师模式(真实模式)与网络判定模式不符的情况,即会出现误判样本。当待判样本与某一误判训练样本比较接近时,网络很可能对其造成模式误判。为此,本文通过引入训练样本的正、误判子集及定义在其上的待判样本的距离,将距离算法和BP算法相结合,提出了解决这一问题的新方法。