论文部分内容阅读
红外图像成像模糊、易受噪声污染,分辨率低,采用标准的FCM分割算法会出现失效和误分割。通过对以往各种方法的研究,根据红外图像的特点及FCM算法的不足,提出采用在NSCT变换域进行去噪预处理与改进的FCM算法相结合的分割算法。首先对红外图像进行NSCT变换,在变换域,采用自适应阈值法去除各细节子带中的噪声,其次在FCM算法中引入核映射将数据映射到非线性空间中进行聚类划分,最后采用邻域信息修正当前像素的隶属度值,得到更准确的聚类结果。实验结果证明该算法较FCM、KFCM、SFCM聚类分割算法有更好的分割精度。