【摘 要】
:
当将人工智能技术应用于军事领域中的目标识别任务时,针对由红外图片采集的局限性而造成的训练数据不足的问题,提出了基于生成对抗网络以生成红外图像的方法,实现了数据集的扩充。对基本的生成对抗网络进行了改进,将网络的输入由随机噪声变为真实图片,使之实现了图片到图片的风格转换,即彩色图片转变为红外图片。经过网络模型的搭建和训练,实验结果表明,该方法能够有效生成清晰和高质量的红外图片,解决了由红外数据不足而造
【机 构】
:
上海交通大学类脑智能应用技术研究中心,上海航天控制技术研究所
【基金项目】
:
上海航天先进技术联合研究基金(USCAST2019-26)。