论文部分内容阅读
一、问题的发现和提出一元二次方程的解法及其应用是中考必考内容。例如2014年杭州中考第22题:菱形ABCD的对角线AC、BD相交于点O,AC=4×3~(1/2),BD=4,动点P在线段BD上从点B向点D运动,PP′⊥AB于点P′,四边形PFBG关于BD对称。四边形QEDH与四边形PFBG关于AC对称,设菱形ABCD被这两个四边形盖住部分的面积为S_1,未盖住部分的面积为S_2,BP=x.
First, the discovery of the problem and put forward the quadratic equation solution and its application is the exam will be the content. For example, in the 2014 Hangzhou Entrance Examination Question 22, the diagonal AC, BD of diamond ABCD intersect at point O, AC = 4 × 3 ~ (1/2), BD = 4. Point D motion, PP’⊥AB at point P ’, quadrilateral PFBG about BD symmetry. Quadrilateral QEDH and Quadrilateral PFBG are symmetrical about AC. Let rhombus ABCD be covered by these two quadrilaterals in area S_1, and uncapped areas in area S_2 and BP = x.