论文部分内容阅读
本文对一类非线性系统,提出了一种设计渐近稳定控制律的有效方法.其中,通过更新系统浸入与不变流形理论的应用方法,流形的吸引坐标可以在有限时间内收敛到平衡点.为了得到闭环系统的稳定性,增广系统的各个信号被证明是有界的.本文得出的一个重要成果是流形吸引有限时间的计算方法.此外,在施加了有限时间流形吸引控制器之后,流形对外部有界未知扰动具有不敏感性.最后利用车摆系统来论述所提出的控制方法的设计步骤,以及通过仿真验证控制器的性能.
In this paper, we present an efficient method to design asymptotic stability control law for a class of nonlinear systems, in which the attraction coordinates of the manifold can converge to a finite time by updating the application of the system immersion and invariant manifold theory In order to get the stability of the closed-loop system, the signals of augmented system are proved to be bounded. One of the important results obtained in this paper is that manifold attracts a finite time calculation method.In addition, when a finite time manifold After attracting the controller, the manifold is insensitive to the bounded unknown disturbance.At last, the pendulum system is used to discuss the design steps of the proposed control method and to verify the performance of the controller through simulation.