论文部分内容阅读
在类一属性相关离散化方法的基础上,提出一种基于Cramer’s V的连续属性离散化算法CVM,该方法利用统计学中的Cramer’s V来量化类一属性相关度,以保证离散后的类一属性相关度最大。与CADD和CAIM算法的实验比较以及对离散化后的数据进行C4.5分类测试,表明CVM算法性能良好,其离散化的数据明显地提高了分类器的预测精度。