论文部分内容阅读
发动机的故障诊断是一个动态的故障分类过程,许多故障诊断方法在对动态故障模式进行识别和分类时,存在对未知故障模式无法识别的问题。针对这一问题,引入ART2神经网络,利用db6小波包对发动机气缸盖的振动信号提取的特征向量作为网络的输入,应用实例证明,ART2神经网络不仅能正确识别学习过的故障模式,对突发、未知的故障模式也能很好地识别。