论文部分内容阅读
针对一般粒子群算法辨识永磁同步电机(PMSM)参数由于其粒子在迭代后期易陷入局部最优而导致辨识精度不高的问题,提出一种将小生镜策略和混沌变异策略相结合的混沌变异小生境粒子群算法(NCPSO)。该算法为在连续三次迭代过程中对适应度值变化小的粒子为中心生成小生镜群体,并对该小生境群体中的最优粒子进行混沌变异。在同步旋转dq轴坐标系下建立PMSM满秩离散数学模型,将定子dq轴电压设为辨识模型和实际测量值的输入,设计了NCPSO辨识PMSM参数的适应度函数。该辨识方法不需推导复杂的电机数学模型,可同时辨识定子绕组