论文部分内容阅读
摘 要:在当今的教育大环境下,初中数学教学上的许多内容都有了进一步的变化。就“数与代数”的教学而言,从内容编排来看,课程标准中数与代数的内容标准与原教学大纲的内容相比有加强要求的方面和降低要求的方面,这就需要我们在进行新课程教学中加以注意。本文就新课改后对“数与代数”教学所需要加强要求的方面加以研究。
关键词:新课改;数与代数;加强要求;研究
数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。这不禁让我重新对这一理念加以剖析。19世纪恩格斯说:“数学是关于空间形式和数量关系的学科。”而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。下面从三个方面谈谈自己的感想。
(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。”
可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等。在课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。
数学与现实生活是密切相关的。联合国教科文组织早在八十年代初就提出“数学问题解决应作为学校数学教育的中心”。因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力。过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法。但在日常生活中恰恰是估算较笔算用得更为广泛。我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等。因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值。新课程标准也反复强调要加强估算,淡化笔算。
(二)“数与代数”有利于发展学生思维、能力,培养数学情感的数学。
在提倡“人人学有价值的数学”的今天,将这一理念落实到中学阶段,就要求我们教师不仅仅要关注学生知识技能掌握如何,更要关注到学生的情感、态度、价值观和一般能力的培养。学生的思维能力、思想方法、习惯、情感和态度对于学生今后去创造生活有着不可估量的价值。因此,“数与代数”作为基础部分,它的主要内容是研究现实世界数量关系和运动、变化规律中的数学模型,它可以帮助人们从数量关系的角度更准确、清晰的认识、描述和把握现实世界和解决现实世界的问题,能有效发展学生思维、培养数学情感的,就是有价值的数学。
从古时用结绳记数、刻痕记数开始,到算盘的使用,到计算器的使用,到现代大型计算机的问世,直至今天微机的广泛使用。无不说明了创新的价值。所以,只有具有创新精神的人,才能不断创造出更加精彩的世界。因此,能培养学生创新精神的数学就是有价值的数学。这主要体现在解题策略多样化上。对一个问题能从多角度、多层次去思考,对一个事物能做多方面的解释,对一个对象能用多种方式去表达,对一个问题能想出多种不同的解法,那么就不但可以发展自己的思维能力,还会对这一问题的认识更全面、更深刻,有助于学生创新精神的培养。
(三)拓展学生的自主活动范围,重视对数与代数规律和模式的探求
当代的学习理论告诉我们,学习不再看成是一种被动地吸收知识、通过反复练习强化储存知识的过程,而是用学生原有的知识处理新的任务,并构建他们自己的意义。
数学是关于模式的科学,数与代数中有大量的规律、公式和算法。对于数与代数的学习来说,重要的是要让学生学会探求模式,发现规律,而不是死记结论,死套公式和法则。但是,传统的数与代数教学,给学生灌输大量的公式和法则,学生死记公式,死套法则,进行大量的形式操练,但不知公式为何物,不明白公式的意义和作用,不去深究公式的来龙去脉,实际上也不可能真正用来解决问题。只有经过自己的探索,才能不仅“知其然”,而且知其“所以然”,才能真正获得知识,懂得公式的意义,掌握公式的应用。学过的公式,即使忘记了,自己还可以推出来;而且通过探求若干公式的活动,可以提高探索能力,举一反三,探求新的公式,也有利于探索和掌握数与代数的运算和规律。
“数与代数”这一基础部分正是搭建这种思维的桥梁。它不仅能在数的运算、公式的推导、方程的求解、函数的研究等活动中通过对现实情境中数量关系及其变化规律的探索促进学生探究和发现,培养初步的创新精神和实践能力,还能利用正数与负数、精确与近似、方程与求解、已知与未知等概念中蕴涵着对立统一的思想,变量和函数概念中蕴涵着的运动、变化的思想,促进学生用数学、科学的观点认识现实世界!
关键词:新课改;数与代数;加强要求;研究
数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。这不禁让我重新对这一理念加以剖析。19世纪恩格斯说:“数学是关于空间形式和数量关系的学科。”而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。下面从三个方面谈谈自己的感想。
(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。”
可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等。在课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。
数学与现实生活是密切相关的。联合国教科文组织早在八十年代初就提出“数学问题解决应作为学校数学教育的中心”。因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力。过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法。但在日常生活中恰恰是估算较笔算用得更为广泛。我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等。因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值。新课程标准也反复强调要加强估算,淡化笔算。
(二)“数与代数”有利于发展学生思维、能力,培养数学情感的数学。
在提倡“人人学有价值的数学”的今天,将这一理念落实到中学阶段,就要求我们教师不仅仅要关注学生知识技能掌握如何,更要关注到学生的情感、态度、价值观和一般能力的培养。学生的思维能力、思想方法、习惯、情感和态度对于学生今后去创造生活有着不可估量的价值。因此,“数与代数”作为基础部分,它的主要内容是研究现实世界数量关系和运动、变化规律中的数学模型,它可以帮助人们从数量关系的角度更准确、清晰的认识、描述和把握现实世界和解决现实世界的问题,能有效发展学生思维、培养数学情感的,就是有价值的数学。
从古时用结绳记数、刻痕记数开始,到算盘的使用,到计算器的使用,到现代大型计算机的问世,直至今天微机的广泛使用。无不说明了创新的价值。所以,只有具有创新精神的人,才能不断创造出更加精彩的世界。因此,能培养学生创新精神的数学就是有价值的数学。这主要体现在解题策略多样化上。对一个问题能从多角度、多层次去思考,对一个事物能做多方面的解释,对一个对象能用多种方式去表达,对一个问题能想出多种不同的解法,那么就不但可以发展自己的思维能力,还会对这一问题的认识更全面、更深刻,有助于学生创新精神的培养。
(三)拓展学生的自主活动范围,重视对数与代数规律和模式的探求
当代的学习理论告诉我们,学习不再看成是一种被动地吸收知识、通过反复练习强化储存知识的过程,而是用学生原有的知识处理新的任务,并构建他们自己的意义。
数学是关于模式的科学,数与代数中有大量的规律、公式和算法。对于数与代数的学习来说,重要的是要让学生学会探求模式,发现规律,而不是死记结论,死套公式和法则。但是,传统的数与代数教学,给学生灌输大量的公式和法则,学生死记公式,死套法则,进行大量的形式操练,但不知公式为何物,不明白公式的意义和作用,不去深究公式的来龙去脉,实际上也不可能真正用来解决问题。只有经过自己的探索,才能不仅“知其然”,而且知其“所以然”,才能真正获得知识,懂得公式的意义,掌握公式的应用。学过的公式,即使忘记了,自己还可以推出来;而且通过探求若干公式的活动,可以提高探索能力,举一反三,探求新的公式,也有利于探索和掌握数与代数的运算和规律。
“数与代数”这一基础部分正是搭建这种思维的桥梁。它不仅能在数的运算、公式的推导、方程的求解、函数的研究等活动中通过对现实情境中数量关系及其变化规律的探索促进学生探究和发现,培养初步的创新精神和实践能力,还能利用正数与负数、精确与近似、方程与求解、已知与未知等概念中蕴涵着对立统一的思想,变量和函数概念中蕴涵着的运动、变化的思想,促进学生用数学、科学的观点认识现实世界!