论文部分内容阅读
本文给出了一种利用神经网络计算光流场的新算法。整个计算过程分为三个阶段:神经网络模型参数的估计,轮廓边界垂直速度分量的动态测量以及光流场的计算。通过网络能量函数和运动的约束误差函数的比较对网络参数进行估计。用一个动态算法迭代运行非线性光流场计算方法以使神经网络能量函数达到最小,同时也对垂直速度分量进行动态估计。由模拟试验结果讨论了影响神经网络收敛性能的若干因素。