论文部分内容阅读
对于具有化学势的一组Hubbard模型的非对称单值(monodromy)矩阵,通过求解Yang-Baxter关系,得到了与其相关的量子R矩阵,由此给出该模型的量子可积性的直接证明.其结果使具有周期性边界条件和开边界条件的Hubbard模型的代数Betheansatz处理成为可能.
For the asymmetric monodromy matrix of a group of Hubbard models with chemical potential, a quantum R matrix is obtained by solving the Yang-Baxter relation, and a direct proof of the quantum integrability of the model is obtained. The result is an algebraic Betheansatz process for the Hubbard model with periodic boundary conditions and open boundary conditions.