论文部分内容阅读
提出一个带有免疫响应项和转氨酶(ALT)项的乙肝病毒(HBV)感染数学模型.模型有三个平衡点:病毒清除平衡点Q_1,免疫耗竭平衡点Q_2和持续带毒平衡点Q_3.证明如果模型的基本病毒复制数R_0<1,则Q_1全局渐近稳定;如果R_0>1,则Q_2全局渐近稳定.这暗指若一个HBV感染者的R_0<1,则即使感染大量病毒也能最终痊愈.模型的抗HBV感染模拟结果发现替诺福韦(TDF)抗HBV感染治疗可能激活患者细胞因子介导的非细胞毒性HBV清除能力,直接杀伤HBV而不损伤感染肝细胞.
A mathematical model of hepatitis B virus (HBV) infection with immune response and aminotransferase (ALT) was proposed.The model has three equilibriums: viral clearance point Q 1, immune exhaustion balance point Q 2 and sustained virulence equilibrium point Q 3, In the model, the number of basic virus replicas is R_0 <1, then Q_1 is globally asymptotically stable. If R_0> 1, then Q_2 is globally asymptotically stable, which implies that if a virus infected with R_0 <1, Cured.Model anti-HBV infection simulation results found that treatment of tenofovir (TDF) against HBV infection may activate cytokines-mediated non-cytotoxic HBV clearance in patients with direct killing of HBV without damage to infected liver cells.