论文部分内容阅读
随着城市化进程的加快,我国城市机动车数量快速增加,使得现有路网容量难以满足交通运输需求,交通拥堵、环境污染、交通事故等问题与日俱增。准确高效的交通流预测作为智能交通系统的核心,能够有效解决交通出行和管理方面的问题。现有的短时交通流预测研究往往基于浅层的模型方法,不能充分反映交通流特性。文中针对复杂的交通网络结构,提出了一种基于DCGRU-RF(Diffusion Convolutional Gated Recurrent Unit-Random Forest)模型的短时交通流预测方法。首先,使用DC