论文部分内容阅读
由于不同气象条件会影响太阳辐照度的有效利用,这制约了太阳能的应用和发展.为了基于不同站点不同采样时刻的气象属性预测中尺度站的太阳能辐照度,依据传统卷积神经网络的框架,建立了一种新型的卷积神经网络结构并用于太阳能辐照度预测.为了缓解新型网络由超参数选取不当导致预测性能差的问题,利用融合算法对新型网络的超参数进行优化.为了提高融合优化算法的全局搜索能力,引入帐篷映射对粒子的初始位置和初始速度进行混沌初始化.首先,导入训练集更新新型卷积神经网络框架,训练结束后导入验证集检验当前模型参数下新型卷积框架的性能.其次