论文部分内容阅读
提出了一种基于动态聚类和遗传算法相结合的组合RBF网络训练方法;采用动态聚类法对样本数据进行聚类,使RBF神经网络的隐含层节点中心数在训练过程中自动确定,使用经验公式作为标准,选取最优聚类数,采用遗传算法对隐层中心和宽度以及隐层到输出层的权值进行优化,在全局范围内寻找网络的最优模型;最后对轮对缺陷进行纹理特征提取,并组成训练样本和测试样本,输入到网络进行训练与测试;实验结果表明,与传统方法比较,该组合方法具有较高的识别率。