论文部分内容阅读
传统的轧制力模型结构简单、精度较低,即使采用基于有限元的数值积分方式进行精化,出于计算效率的考虑因其有限区域的划分十分有限,因此对于轧制力计算的精度提高有限。直接采用神经网络对轧制力进行建模可以极大地提高模型精度,但是模型对新型材料的泛化能力较差。为此提出简单有限无轧制力模型,并在模型基础上使用HJPS优化算法的神经网络对轧制力进行修正,对该模型的仿真测试表明,该模型具有很强的泛化能力,收敛速度快、不易陷于局部优化,能够极大地提高轧制力模型的计算精度。