论文部分内容阅读
目的:基于密度分布特征及机器学习诊断新型冠状病毒(COVID-19)相关性肺炎。方法:回顾性收集经荧光逆转录聚合酶链反应检测确诊COVID-19的患者42例(COVID-19组),社区获得性肺炎43例(对照组)。共获得211份胸部CT图像,以6:4比例分层抽样为训练集(126份)及验证集(85份)。采用一种CAD软件中的肺炎模块获得肺炎不同密度区间所占全肺体积的百分比(P/L%)。密度分布特征降维后采用支持向量机(SVM)建模,并评价4种核函数的SVM模型的诊断效能。结果:两组患者的年龄、性别及出现胸膜腔