论文部分内容阅读
目的:评估乌骨藤提取物对红细胞形态及生理功能的影响,并初步探讨其作用机制。创新点:首次检测乌骨藤提取物对红细胞的毒性作用,并且初步探索此毒性作用与乌骨藤导致的红细胞内活性氧(ROS)和钙离子水平的相关性。方法:不同浓度乌骨藤提取物(0、64、128和256μg/ml)处理红细胞24 h,通过流式细胞术检测前向角散射(FSC)和侧向角散射(SSC),计算红细胞破碎率和大小改变,通过显微镜观察形态学的变化;装载2’,7’-二氯荧光黄双乙酸盐(DCFH-DA)和钙荧光探针Fluo-4染料,通过流式细胞术分别检测红细胞ROS和钙离子荧光强度的变化;通过观察一系列低渗生理盐水下红细胞的溶胀情况,评估乌骨藤提取物对红细胞脆性的改变。结论:乌骨藤提取物剂量依赖性地增加红细胞的破碎率(图1),导致FSC增加(图2),同时高浓度乌骨藤提取物(256μg/ml)导致红细胞圆盘状结构消失(图3);128和256μg/ml乌骨藤提取物处理红细胞导致胞内钙离子显著增加(图4);乌骨藤提取物在高糖环境中诱导红细胞ROS累计,并最终导致红细胞脆性增加(图5)。上述结果显示,乌骨藤提取物对红细胞有毒性作用,并有可能在临床抗癌治疗中破坏红细胞引起潜在的毒副作用(图6)。
OBJECTIVE: To evaluate the effects of extract of Cnidium verus on erythrocyte morphology and physiological function, and to explore its mechanism. Innovative point: for the first time to detect the toxic effects of Acanthopanax cordyceps extract on erythrocytes, and to explore the toxic effects and the initial Osteoporosis induced red blood cells reactive oxygen species (ROS) and calcium levels. Methods: Erythrocytes were treated with different concentrations of Acanthus cochinchinensis (0, 64, 128 and 256 μg / ml) for 24 h. The anterior horn scatter (FSC) and lateral angle scatter (SSC) were measured by flow cytometry. Morphological changes were observed by microscopy. After loading 2 ’, 7’-dichlorofluorescein diacetate (DCFH-DA) and calcium fluorescent probe Fluo-4 dye, the changes of erythrocyte ROS were detected by flow cytometry And calcium fluorescence intensity changes; by observing a series of hypodense saline erythrocyte swelling, to evaluate the extract of the black-bone Osteoporosis of red blood cells change. CONCLUSIONS: Acanthus Extract increases dose-dependently the rate of erythrocyte fragmentation (Fig. 1), resulting in an increase in FSC (Fig. 2), while the high concentration of Acacia cateatae (256 μg / ml) resulted in the disappearance of the disc- Figure 3); treatment of erythrocytes with 128 and 256 [mu] g / ml Acanthus Extract resulted in a significant increase of intracellular calcium (Figure 4); Acacia cuspidatum extract induced accumulation of erythrocyte ROS in a high glucose environment and eventually resulted in an increase in erythrocyte fragility Figure 5). The above results show that the extract of Acanthopanax is toxic to erythrocytes and potentially cause potential toxic side effects in the destruction of erythrocytes in clinical anti-cancer therapy (Figure 6).