,Tuning electronic properties of the S2/graphene heterojunction by strains from density functional t

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:ZY5158598
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Based on the density functional calculations,the structural and electronic properties of the WS2/graphene heterojunction under different strains are investigated.The calculated results show that unlike the free mono-layer WS2,the monolayer WS2 in the equilibrium WS2/graphene heterojunctionis characterized by indirect band gap due to the weak van der Waals interaction.The height of the schottky barrier for the WS2/graphene heterojunction is 0.13 eV,which is lower than the conventional metal/MoS2 contact.Moreover,the band properties and height of schottky barrier for WS2/graphene heterojunction can be tuned by strain.It is found that the height of the schottky barrier can be tuned to be near zero under an in-plane compressive strain,and the band gap of the WS2 in the heterojunction is tued into a direct band gap from the indirect band gap with the increasing schottky barrier height under an in-plane tensile strain.Our calculation results may provide a potential guidance for designing and fabricating the WS2-based field effect transistors.
其他文献
养心菜(Sedum aizoon L),为景天属多年生草本植物,即有观赏价值又有药食兼用价值,近年来逐步得到园林领域、食品领域、环保领域等的一致认可。随着土壤盐渍化程度不断加重,可
The magnetic property in a material is induced by the unpaired electrons.This can occur due to defect states which can enhance the magnetic moment and the spin
By means of analytic function theory,the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexa
辣椒(Capsicum annuum L.)又名番椒、海椒、辣子、辣茄等,属茄科(Solanaceae)辣椒属(Capsicum)。辣椒是世界上最主要的蔬菜作物之一,在我国栽培历史悠久。辣椒具有食用、佐料、
本试验利用生长速率法、柱层析法等研究了西芹根物质四次醇层物对黄瓜枯萎病菌的化感作用,并系统深入地研究了其对黄瓜枯萎病菌的化感作用机理,且对四次层析后的最佳流分进行
喜欢看初冬的芦苇,白茫茫的,好似原野上提前飘落的雪.“十分秋色无人管,半属芦花半蓼花.”在元人黄庚眼里,平分秋色的是芦花和蓼花,蓼花以热烈为美,芦花则以清淡传神.萧瑟之
期刊
以果实质地有明显差异的溶质性李‘海湾红宝石’(Prunus salicina Lindl.cv.Gulfruby)和半溶质性李‘美丽李’(Prunus salicina Lindl.cv.Beauty)为主要试材,研究了不同成熟度的果
数学是人们生活、工作和学习不可缺少的工具,它可以帮助人们处理数据、计算、推理和证明。数学模型可以有效地描述自然现象和社会现象,它在提高人们的推理能力、抽象能力、想象力和创造力方面发挥着独特的作用。数学文化具有很强的内在逻辑性、历史发展的连续性和广泛的外部关系。数学课上的許多模块具有独特的文化背景。“平行与垂直”和数学文化又有什么样的结合点呢?  一、两条直线的关系  在同一平面内,不相交的两条直线
期刊