论文部分内容阅读
基于Leray-Schauder度理论和上下解方法讨论非线性边值问题y″+f(y)=0,y(0)=0,y(1)=b>0的正解存在性,其中f是局部Lipschitz连续函数f(0)≥0,并且可以是变号函数.主要结论是:如果f在+∞满足一个超线性增长条件,并且存在满足条件β(1)>0的非负上解β,则存在正数B使得此边值问题当b<B时,至少存在两个正解;当b=B时,至少存在一个正解;当b>B时,不存在正解.