摘 要 结核病由结核分枝杆菌感染引起,是一类慢性、传染性和致命性的疾病。随着耐多药和广泛耐药结核分枝杆菌的不断出现与快速传播,结核病治疗变得更加艰难,寻找新药成为当务之急。本文介绍近年来抗结核新药的研发进展。
关键词 抗结核药物 结核病 结核分枝杆菌
中图分类号:R978.3 文献标志码:A 文章编号:1006-1533(2021)21-0011-05
Research progress of new antituberculosis drugs
WU Shanshan
(Department of Pharmacy, Shanghai Public Health Clinical Center, Shanghai 201508, China)
ABSTRACT Tuberculosis is caused by the Mycobacterium tuberculosis and is a chronic, infectious and fatal disease. Its treatment becomes more difficult due to the emergence and rapid spread of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis. So it is urgent to find new drugs. The new drugs found in recent years are briefly described so as to provide a reference for the research and development of new antituberculosis drugs.
KEy wORDS antituberculosis drugs; tuberculosis; Mycobacterium tuberculosis
肺結核是一种传染性疾病,通常情况下仅影响肺部,但约25%患者的结核分枝杆菌(以下简称“结核杆菌”)会通过血液进入并感染身体的其他部位,如胸膜、脑膜、淋巴系统、泌尿生殖系统、骨骼和关节等。结核病可治愈、可预防。有数据显示,2019年全球结核病患者中有78%的患者为耐多药患者;61%的结核病患者被检测出对利福平耐药,而此比率在2017年为51%,在2012年为7%;约9.5%的耐多药结核病患者实为广泛耐药的患者[1-2]。因此,临床上迫切需要有对耐药结核杆菌感染有效的新药。事实上,人们也确在积极研究与开发新的抗结核药物:截至2020年8月,除已获准上市的贝达喹啉(bedaquiline)、德拉马尼(delamanid)和pretomanid外,还有19种抗结核新药处于不同临床研究阶段[3],其中包括13种新化合物和6种意欲增加抗结核新用途的已上市药物。本文就新化合物类抗结核新药(表1)的研发进展作一简要介绍。
肺结核治疗多采用多种药物联合用药,且用药持续时间长,其中耐多药结核病患者常需持续用药6 ~ 20个月。结核病治疗面临的挑战首先是治疗方案的复杂性和用药持续时间长,两者都会影响患者的治疗依从性;其次是不良反应,尤其是用于治疗耐药结核病的二线治疗药物的不良反应较多,且抗结核药物与其他药物之间的相互作用情况也较复杂。因此,临床上迫切需要有更有效、更安全的抗结核新药。抗结核新药的研发进展令人关注。
参考文献
[1] Dalberto PF, de Souza EV, Abbadi BL, et al. Handling the hurdles on the way to anti-tuberculosis drug development [J]. Front Chem, 2020, 8: 586294.
[2] Oh S, Trifonov L, Yadav VD, et al. Tuberculosis drug discovery: a decade of hit assessment for defined targets [J]. Front Cell Infect Microbiol, 2021, 11: 611304.
[3] WHO. Global tuberculosis report 2020 [EB/OL]. [2021-03-23]. https://apps.who.int/iris/bitstream/handle/10665/ 336069/9789240013131-eng.pdf?sequence=1&isAllowed=y.
[4] Li Y, Sun F, Zhang W. Bedaquiline and delamanid in the treatment of multidrug-resistant tuberculosis: promising but challenging [J]. Drug Dev Res, 2019, 80(1): 98-105.
[5] Degiacomi G, Sammartino JC, Sinigiani V, et al. In vitro study of bedaquiline resistance in Mycobacterium tuberculosis multi-drug resistant clinical isolates [J]. Front Microbiol, 2020, 11: 559469.
[6] Hu M, Zheng C, Gao F. Use of bedaquiline and delamanid in diabetes patients: clinical and pharmacological considerations[J]. Drug Des Devel Ther, 2016, 10: 3983-3994.
[7] Nieto Ramirez LM, Quintero Vargas K, Diaz G. Whole genome sequencing for the analysis of drug resistant strains of Mycobacterium tuberculosis: a systematic review for bedaquiline and delamanid [J]. Antibiotics (Basel), 2020, 9(3): 133.
[8] WHO. The use of delamanid in the treatment of multidrugresistant tuberculosis: interim policy guidance [EB/ OL]. [2021-03-23]. http://apps.who.int/iris/bitstream/ handle/10665/137334/WHO_HTM_TB_2014.23_eng. pdf?sequence=1.
[9] Szumowski JD, Lynch JB. Profile of delamanid for the treatment of multidrug-resistant tuberculosis [J]. Drug Des Devel Ther, 2015, 9: 677-682.
[10] Esposito S, Bosis S, Tadolini M, et al. Efficacy, safety, and tolerability of a 24-month treatment regimen including delamanid in a child with extensively drug-resistant tuberculosis: a case report and review of the literature [J]. Medicine (Baltimore), 2016, 95(46): e5347.
[11] Zhang F, Li S, Wen S, et al. Comparison of in vitro susceptibility of mycobacteria against PA-824 to identify key residues of Ddn, the deazoflavin-dependent nitroreductase from Mycobacterium tuberculosis [J]. Infect Drug Resist, 2020, 13: 815-822.
[12] Gils T, Lynen L, de Jong BC. Pretomanid for tuberculosis: a systematic review [J]. Clin Microbiol Infect, 2021, 13: S1198-743X(21)00464-X.
[13] Lienhardt C, Raviglione M, Spigelman M, et al. New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future [J]. J Infect Dis, 2012, 205(Suppl 2): S241-S249.
[14] Neres J, Pojer F, Molteni E, et al. Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis [J]. Sci Transl Med, 2012, 4(150): 150ra121.
[15] Makarov V, Manina G, Mikusova K, et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis [J]. Science, 2009, 324(5928): 801-804.
[16] Wolucka BA. Biosynthesis of D-arabinose in mycobacteria—a novel bacterial pathway with implications for antimycobacterial therapy [J]. FEBS J, 2008, 275(11): 2691-2711.
[17] Zhang G, Howe M, Aldrich CC. Spirocyclic and bicyclic 8-nitrobenzothiazinones for tuberculosis with improved physicochemical and pharmacokinetic properties [J]. ACS Med Chem Lett, 2019, 10(3): 348-351.
[18] Makarov V, Lechartier B, Zhang M, et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones [J]. EMBO Mol Med, 2014, 6(3): 372-383.
[19] Hariguchi N, Chen X, Hayashi Y, et al. OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 inhibitor [J]. Antimicrob Agents Chemother, 2020, 64(6): e02020-19.
[20] Working Group on New TB Drugs. TBA-7371 [EB/ OL]. [2021-03-23]. https://www.newtbdrugs.org/pipeline/ compound/tba-7371.
[21] Tahlan K, Wilson R, Kastrinsky DB, et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother, 2012, 56(4): 1797-1809.
[22] Nikonenko BV, Protopopova M, Samala R, et al. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs [J]. Antimicrob Agents Chemother, 2007, 51(4): 1563-1565.
[23] Reddy VM, Dubuisson T, Einck L, et al. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro[J]. J Antimicrob Chemother, 2012, 67(5): 1163-1166.
[24] Choi Y, Lee SW, Kim A, et al. Safety, tolerability and pharmacokinetics of 21 day multiple oral administration of a new oxazolidinone antibiotic, LCB01-0371, in healthy male subjects [J]. J Antimicrob Chemother, 2018, 73(1): 183-190.
[25] Tenero D, Derimanov G, Carlton A, et al. First-time-inhuman study and prediction of early bactericidal activity for GSK3036656, a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment [J]. Antimicrob Agents Chemother, 2019, 63(8): e00240-19.
[26] Williams KN, Stover CK, Zhu T, et al. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model [J]. Antimicrob Agents Chemother, 2009, 53(4): 1314-1319.
[27] Wallis RS, Jakubiec W, Kumar V, et al. Biomarker-assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis [J]. Antimicrob Agents Chemother, 2011, 55(2): 567-574.
[28] Zhu H, Fu L, Wang B, et al. Activity of clofazimine and TBI-166 against Mycobacterium tuberculosis in different administration intervals in mouse tuberculosis models [J]. Antimicrob Agents Chemother, 2021, 65(4): e02164-20.
[29] Zhang D, Lu Y, Liu K, et al. Identification of 1ess lipophilic riminophenazine derivatives for the treatment of drugresistant tuberculosis [J]. J Med Chem, 2012, 55(19): 8409-8417.
[30] Zhang Y, Zhu H, Fu L, et al. Identifying regimens containing TBI-166, a new drug candidate against Mycobacterium tuberculosis in vitro and in vivo [J]. Antimicrob Agents Chemother, 2019, 63(7): e02496-18.
[31] Working Group on New TB Drugs. TBI-223 [EB/OL]. [2021-03-23]. https://www.newtbdrugs.org/pipeline/compound/tbi-223.
[32] Sarathy JP, Ganapathy US, Zimmerman MD, et al. TBAJ-876, a 3,5-dialkoxypyridine analogue of bedaquiline, is active against Mycobacterium abscessus [J]. Antimicrob Agents Chemother, 2020, 64(4): e02404-19.
[33] Choi PJ, Conole D, Sutherland HS, et al. Synthetic studies to help elucidate the metabolism of the preclinical candidate TBAJ-876—a less toxic and more potent analogue of bedaquiline [J]. Molecules, 2020, 25(6): 1423.
[34] Sarathy JP, Ragunathan P, Cooper CB, et al. TBAJ-876 displays bedaquiline-like mycobactericidal potency without retaining the parental drug’s uncoupler activity [J]. Antimicrob Agents Chemother, 2020, 64(2): e01540-19.
[35] Stokes SS, Vemula R, Pucci MJ. Advancement of GyrB inhibitors for treatment of infections caused by Mycobacterium tuberculosis and non-tuberculous mycobacteria [J]. ACS Infect Dis, 2020, 6(6): 1323-1331.
[36] Brown-Elliott BA, Rubio A, Wallace RJ Jr. In vitro susceptibility testing of a novel benzimidazole, SPR719, against nontuberculous mycobacteria [J]. Antimicrob Agents Chemother, 2018, 62(11): e01503-18.
[37] de Jager VR, Dawson R, van Niekerk C, et al. Telacebec(Q203), a new antituberculosis agent [J]. N Engl J Med, 2020, 382(13): 1280-1281.
[38] Pethe K, Bifani P, Jang J, et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis [J]. Nat Med, 2013, 19(9): 1157-1160.
目的:探讨基于深度学习和阈值分割方法对乳腺磁共振成像(magnetic resonance imaging,MRI)背景实质强化(background parenchymal enhancement,BPE)自动分类的可行性.方法:回顾并分析2010年1月—2018年10月北京大学第一医院行乳腺MRI检查的547例乳腺癌患者的影像学资料.由2名高年资放射科医师共同评估,依据乳腺影像报告和数据系统(Breast Imaging Reporting and Data System,BI-RADS)对健侧乳腺的
目的:构建乳腺肿块的综合乳腺影像报告和数据系统(Breast Imaging Reporting and Data System,BI-RADS)预测模型,得到不同于单一影像的BI-RADS分类.方法:回顾并分析2019年8月—2020年9月术前行超声、乳腺X线摄影及磁共振成像(magnetic resonance imaging,MRI)检查的患者图像,根据BI-RADS词典对肿块特征进行评估,取3种影像的最高BI-RADS类别为因变量,影像学特征及临床指征为自变量,根据多元logistic回归构建综合