论文部分内容阅读
为了解决现有维数约简算法受样本分布影响较大、不支持小样本学习等问题,在分析线性鉴别分析(LDA)中最优鉴别向量与支持向量机(SVM)中分类超平面法向量之间关系的基础上,基于统计不相关最优鉴别向量集优于正交最优鉴别向量集的事实,提出了通过对改进的SVM的二次优化问题进行递归求解来获取具有统计不相关性的最优边界鉴别向量集的算法,并使用核方法将其推广到可以解决非线性特征抽取问题.结果表明:在采用相同参数并使用k-最近邻分类器进行训练和测试的情况下,提出的算法对实际数据集Waveform,Heart,Dia