论文部分内容阅读
地震砂土液化的影响因素具有非线性关系,至今没有形成规范的预测标准。人工神经网络在砂土液化预测中有较好的应用,尤其是BP神经网络,但由于其本身存在缺陷:学习收敛速度慢,易陷入局部极小;遗传算法具有良好的搜索全局最优解的能力。探讨利用遗传算法优化BP神经网络权值和初始阈值来预测地震砂土液化,其效果比传统的BP网络有显著提高。