论文部分内容阅读
属性约简是粗糙集理论中一个核心研究问题,在对粗糙集中属性约简相关理论研究的基础上,提出了一种新的基于随机决策信息系统的属性约简算法。新算法充分利用属性依赖度所提供的信息对属性进行排序,并以一定的优化顺序来计算属性子集的信任函数或似真函数。计算结果表明:改进后的新算法计算量大大减小,尤其是当条件属性较多时,计算量的减少更加明显,从而大大提高了计算效率。计算实例验证了该算法的有效性,具有很强的优越性。