论文部分内容阅读
针对蚁群系统(ACS)解决机器人路径规划问题时种群多样性与收敛速度的不足,对蚁群系统引入动态混沌算子,从而平衡种群多样性和收敛速度之间的关系。动态混沌蚁群系统的核心是在传统蚁群系统引入Logistic混沌算子来增加种群多样性,从而提高解的质量。在迭代前期加入混沌算子,以调整路径中的全局信息素值,增加算法的种群多样性,从而避免算法陷入局域优化解;在后期则转为蚁群系统,来确保动态混沌蚁群系统的收敛速度。仿真结果表明,对于机器人路径规划问题,与蚁群系统相比,动态混沌蚁群系统具有更好的种群多样性、更高的解的质量和