论文部分内容阅读
中药材作为一种特殊的农产品,其价格态变化过程呈现出高度复杂的非线性特征,增加了中药材价格预测的难度.通过研究影响中药材价格的主要因素,并在分析传统价格预测方法的基础上,针对中药材价格变化具有随机性、突变性和非线性的特点,通过小波和RBF神经网络结合构建一个中药材价格预测模型(W-RBF).采用W-RBF神经网络模型对白芍价格进行预测,并将预测结果与RBF神经网络模型预测结果做了比较.实验结果说明,W-RBF神经网络模型预测准确率明显提高,比RBF神经网络模型更具优越性.