论文部分内容阅读
用户评分矩阵稀疏问题影响协同过滤的推荐性能。为此,提出一种基于多示例学习的对象图像推荐算法。将分割区域的视觉特征作为图像中的示例,利用多样性密度函数求得最大多样性密度点,使用正负图像内容评价不同用户间的相似性,将其与传统余弦相似性进行组合,从而实现推荐。实验结果表明,该算法提高了推荐性能。