论文部分内容阅读
基于服务质量(QoS)的Web服务组合是一个非线性、多目标优化求解问题,属于NP难问题。提出一种多目标粒子群优化算法来求解基于QoS的Web服务组合问题,在Web服务组合模型中考虑了服务执行代价、时间、可用性等五方面的因素。针对基于QoS的Web服务组合特点,借鉴运动学速度分解原理对粒子每维的速度进行相应分解,采用多目标指导粒子的飞行;基于Pareto支配关系来更新粒子的个体极值,采用精英归档技术维持种群多样性,粒子的全局极值由外部档案库中的非劣最优解提供;针对粒子群易陷入局部最优问题,采用了变异策略来改