论文部分内容阅读
针对无刷直流电机(BLDCM)故障诊断问题,提出一种基于主成分分析(PCA)和支持向量机(SVM)的故障诊断方法。首先对故障时刻无刷直流电机三相电流进行分析,提取故障特征值,再由PCA从提取的故障特征值中选取敏感特征,最后使用SVM对特征值集合进行训练和测试,实现故障诊断与识别。该方法在6种无刷直流电机典型故障中进行了验证.故障诊断准确率高达92%,证实了该方法的有效性。