论文部分内容阅读
针对传统的境外旅游人数预测模型预测误差大的情况,设计了基于RBF神经网络的境外旅游人数预测模型。首先对旅游样本数据进行归一化处理,对境外旅游人数变动统计。然后通过预测种群构建、评估适应值、惩罚项设置、预测序列平稳性检验、模型预测五个过程完成了基于RBF神经网络的境外旅游人数预测模型的设计。最后,实验证明,RBF神经网络的境外旅游人数预测模型比传统的境外旅游人数预测模型误差小,能够准确对境外旅游人数预测。