论文部分内容阅读
通过选取另一类种子解,给出了(2+1)维非线性KdV方程的一类变量分离新解.适当地选择变量分离新解中的任意函数和条件函数,揭示了一类新型孤子结构,如周期性孤波结构、环状孤子结构、曲线型孤子结构等.可以发现(2+1)维非线性KdV方程存在的这类新型孤子结构,是无法通过以往文献中给出的通用变量分离表达式得到的,而且这类新型孤子结构对于实际自然现象的解释有积极的意义.