论文部分内容阅读
1978年版的《初中数学》第二册第33页上有一个“我国古代问题”.该题选自《九章算术·盈不足》,原题是:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?答曰:大器二十四分斛之十三,小器二十四分斛之七.”《九章算术》的原编者提示了解法:“术曰:假令大器五斗,小器亦五斗,盈一十斗.令之大器五斗五升,小器二斗五升,不足二斗.”刘徽的注是:“按大器容五斗,
On the 33rd page of the second edition of Mathematical Sciences in 1978, there was an “Ancient Chinese Problem.” This question was taken from the “Nine Chapters: Arithmetic·Insufficiency,” and the original title was: “There is a large device and a small device. Three 斛 斛 斛 斛 斛 大 大 大 大 大 大 大 大 、 斛 斛 斛 斛 斛 斛 斛 问 问 问 问 问 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰. The original editor of Chapter Arithmetic Tips to understand the law: “Surgery 曰: 假 大 大 大 五 五 五 五 , , , , , , , , , , , , , 小 , , , , , , , , , , . . . . . . . 令 令 令. Liu Hui’s note is: ”According to the large capacity and five buckets,