论文部分内容阅读
目的:解决传统方法在临床中对病理图像检测不足以及人工判断导致的错误判断等问题。方法:使用乳腺肿瘤细胞数据集,首先对数据集进行数据增强,增强后数据集为原来的2倍,将增强后数据集输入到本文提出的模型中进行训练。结果:经过100次迭代,训练集的准确率为97.44%,在测试集中准确率为96.4%,召回率为95.5%,与同类型文献相比都有明显提高。结论:本文章提出的改进型卷积神经网络具有收敛快,泛化好等特点。可以对乳腺肿瘤细胞的良恶性进行有效的辨识分类。