论文部分内容阅读
近年来卷积神经网络(CNN)在人脸识别领域有着显著的进步,但是这些卓越的方法是建立在大规模数据、更深和更宽的网络、复杂的算法的基础之上,而且还需要长时间的训练。为此结合深度残差网络提出了一个二叉树型信息融合网络模型。首先,在CNN的每个卷积层的输出特征图后引出两个卷积分支,产生两组特征图,再与父节点的一组特征相融合,然后通过激励函数输出。这种分支的融合可以使特征图的数量降低,在向前传播的过程中减少一定的信息冗余,而且也减少了网络参数的数量。第二,网络设计中通过随机翻转、随机裁剪、添加高斯噪声来增强数