论文部分内容阅读
本文引用独立成分分析与盲信号分离的理论,从遥感高(多)光谱数据的基本统计特征出发,对其概率密度分布作出了分类与解释,并同图像数据的背景与异常建立了联系。在此基础上,对高(多)光谱数据点阵分布的空间几何结构进行了深入的研究分析,推断出遥感高(多)光谱数据集合的高维空间属于低维几何结构-"超平面"形态,而包含蚀变信息在内的异常点群通常会游离在"超平面"之外。然后,对主成分分析(PCA)的信号-噪声模型加以引申,提出了遥感图像多元数据集合高维空间的背景-异常信号子空间可划分的概念,并给出了子空间划分的阈值