论文部分内容阅读
图像特征点的提取是医学图像配准的基础,其精确性直接影响匹配的结果.目前在实际应用中常使用手工提取特征点的方法,精确性差且工作量大.SIFT算子具有良好的尺度、旋转、光照等不变特性,被广泛应用于图像配准中.由于SIFT匹配算法对特征点匹配的条件较为严格,特征点的数量常常无法满足医学图像配准的实际需要,并且存在一定的误匹配.为增加特征点的数量,提高匹配准确率,采用SIFT算法自动提取特征点,并使用特征点之间的Euclid距离作为相似性判定度量,根据医学图像的特点保留低对比度点,以实现医学图像的配准.实验