论文部分内容阅读
Chaki引入了非平坦黎曼流形(Mn,g)(n≥2),并称之为伪Ricci对称流形,记为(PRS)n,在此基础上Chaki和Koley定义了一类非平坦黎曼流形,并称为广义伪Ricci对称流形,记为G(PRS)n。讨论了广义Ricci对称Sasakian流形,证明了如果向量场ρ,λ和μ中任意2个正交于ξ,则第3个也正交于ξ。另外计算了广义伪Ricci对称Sasakian流形的数量曲率的值。