论文部分内容阅读
Lattice-matched InGaAs/lnP heterostructures have been grown by using metalorganic vapor phase epitaxy (MOVPE) with tertiarybutylarsine (TBAs), tertiarybutylphosphine (TBP) as the group V sources. The results of X-ray diffraction on InGaAs/lnP single herterostructure show that there is a compressive-strained interfacial layer at the InP-to-lnGaAs interface. X-ray diffraction of InGaAs/ InP superlattices is successfully simulated by using the same interfacial layer. TBAs purging of InP surface has a significant influence on the interfacial strain. A novel gas switching sequence, which switches group III to the run line earlier than TBAs, is proposed to reduce this interfacial strain. As a result, the average compressive strain of superlattices decreases, and a blue shift of photoluminescence (PL) peak energy and narrowing in PL width are obtained.
Lattice-matched InGaAs / lnP heterostructures have been grown by using metalorganic vapor phase epitaxy (MOVPE) with tertiarybutylarsine (TBAs), tertiarybutylphosphine (TBP) as the group V sources. The results of X-ray diffraction on InGaAs / lnP single herterostructure show that there is a compressive-strained interfacial layer at the InP-to-lnGaAs interface. X-ray diffraction of InGaAs / InP superlattices was successfully simulated by using the same interfacial layer. TBAs purging of InP surface has a significant influence on the interfacial strain. A novel gas switching sequence, which switches group III to the run line earlier than TBAs, is proposed to reduce this interfacial strain. As a result, the average compressive strain of superlattices decreases, and a blue shift of photoluminescence (PL) peak energy and narrowing in PL width are obtained.