论文部分内容阅读
根据超声检测信号的瞬变特性,针对焊缝检测的缺陷分类问题,提出用判别追踪算法提取缺陷信号的局部时频判别特征,并结合概率神经网络实现了焊缝超声检测信号的缺陷分类。在提取时频判别特征时,提出考虑新选原子与已选原子的相关性的判别基提取方案,以降低特征之间的冗余,使提取出的特征能更有效地鉴别不同类别的缺陷。用该方法对一电子束焊缝试块中的缺陷进行了分类,结果表明,时频判别特征适合超声信号的缺陷分类,并能有效地抑制晶粒噪声的影响,考虑判别原子间相关性后可获得更高的分类正确率。