【摘 要】
:
Poly (ethylene-oxide) (PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2. Unfortunately, those membranes are not strong enou
【机 构】
:
Department of Chemical Engineering,Faculty of Engineering,Arak University,Arak 38156-8-8349,Iran;Dep
论文部分内容阅读
Poly (ethylene-oxide) (PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2. Unfortunately, those membranes are not strong enough mechanically and highly crystalline, which hin-ders their broader applications for separation membranes. In this review discussions are made, as much in detail as possible, on the strategies to improve gas separation performance of PEO-based membranes. Some of techniques such as synthesis of graft copolymers that contain PEO, cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane. Incor-poration of ionic liquids/nanoparticles has also been found effective. However, surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer ma-trix. As a result of all such efforts, an excellent performance, i.e., CO2 permeability up to 200 Barrer, CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70, could be achieved. Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50. The CO2 permeability of PEO-based membranes increases, without much change in selectivity, when the length of ethylene oxide is increased.
其他文献
试验研究了1000℃4h和1060℃4h固溶处理后022Cr22Ni5Mo3N钢Φ75 mm材的组织和力学性能.结果 表明,022Cr22Ni5Mo3N钢Φ75 mm材终锻温度970℃空冷的组织(体积分数)约为铁素体31%,奥氏体56%,析出物13%;1000℃4h固溶后为铁素体38%,奥氏体60%,析出物2%;1060℃4h固溶后铁素体50%,奥氏体50%,该钢通过采用1060℃固溶后,拉伸断裂强度731 MPa,延伸率38%,冲击功AKV(-40℃)76 ~81 J,满足标准要求.
The increasing demand of the green energy storage system en-courages us to develop a higher energy storage system to take the place of the present lithium-ion batteries with limited en-ergy/power densities [1,2]. Among the diverse candidates, lithium–sulf
Transition metal compounds are attractive for their significant applications in supercapacitors and as non-noble metal catalysts for electrochemical water splitting. Herein, we develop Ni3S2 nanorods grow-ing directly on Ni foam, which act as multifunctio
The light weight, good bending resistance and low production cost make flexible perovskite solar cells (PSCs) good candidates in wearable electronics, portable charger, remote power, and flying objects. High power conversion efficiency (PCE) plays a cruci
All-inorganic cesium lead bromide (CsPbBr3) perovskite is attracting growing interest as functional ma-terials in photovoltaics and other optoelectronic devices due to its superb stability. However, the fabri-cation of high-quality CsPbBr3 films still rem
Recently, MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability. However, the very high volumetric change caused by its conversion-type reac-tion results in bad reversibility of charge-d
Herein, the relationship between the structure and base properties of Mg–Al hydrotalcite catalysts was comprehensively investigated in relation to heat treatment and rehydration processes, which are well known as memory effects of hydrotalcite. The struct
Lithium–sulfur (Li–S) battery as a high-energy density electrochemical energy storage system has at-tracted many researchers\' attention. However, the shuttle effect of Li–S batteries and the challenges associated with lithium metal anode caused poor cy
Lithium sulfur (Li-S) batteries are the promising power sources, but their commercialization is signifi-cantly impeded by poor energy-storage functions at high sulfur loading. Here we report that such an issue can be effectively addressed by using a musse
从氯丁橡胶的防护体系、增塑剂和补强填充剂等方面对其耐热老化性能进行了研究.结果表明,防护体系采用防老剂ZA/NBC和微晶蜡并用,增塑剂使用TOTM/TP95,补强填充体系选择无机填料和炭黑并用可有效提升氯丁橡胶的耐热老化性能.