论文部分内容阅读
利用奇异谱分析方法对股市时间序列重构,降低噪声并提取趋势序列,并利用C-C算法确定嵌入为维数和延迟阶数进行相空间重构,生成神经网络的学习矩阵,进一步利用Boosting技术和不同的神经网络模型,生成神经网络集成个体,最后采用非参数回归模型进行集成,建立多元变窗宽高斯核函数的非参数回归的神经网络集成模型,以此建立股市预测模型.通过S&P500指数开盘价进行实例分析,与传统的时间序列分析和其他集成方法对比,发现该方法能获得更准确的预测结果.计算结果表明该方法能充分反映股票价格时间序列趋势,为金融时间序列预测提