论文部分内容阅读
稀疏性是现实数据所共有的一般信息表达特性,其含义为数据可由其本质所蕴含的少量基元素进行充分表达。目前,向量(1阶数组)与矩阵(2阶数组)数据均存在较为成熟的稀疏性表达度量,即向量的非零元素个数与矩阵的秩。然而,对于张量(高阶数组)数据的合理稀疏性度量的构造尚未形成统一的解决方案。对张量稀疏性研究的现状进行综合介绍,回顾目前在此方向的研究进展以及所取得的典型应用,并着重介绍本研究小组基于Tucker分解与CANDECOMP/PARAFAC(CP)分解的张量稀疏性内涵理解所构造的一种新型张量稀疏性度量。