拖拉机转向梯形优化设计

来源 :农机化研究 | 被引量 : 0次 | 上传用户:t_bear
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
拖拉机转向梯形的设计关乎拖拉机在转向时的操纵性和安全性。为此,通过对转向梯形工作原理的分析建立了优化模型,并针对模型的求解,提出了一种改进的实数遗传算法。算法采用基于向量旋转的交叉方式进行父代个体交叉,并使用多种变异方法组合的方式进行变异,提高了算法的效率和精度。为了验证算法可行性和有效性,选取了某中小功率农用轮式拖拉机对其转向梯形进行了优化设计,结果表明:算法计算结果更加精准,有效减小了转向机构理论与实际运动轨迹的误差,优化效果理想。
其他文献
随着现代技术的发展,精细农业的应用越来越广泛,凭借着对农作物生长环境的全面监测,农业监测站的规模逐渐扩大。由于农作物生长环境参数种类繁多、数量庞大,且对环境实时性要求较高,导致农业监测站在处理农作物生长环境参数时存在一定的局限性。为此,针对现有农业监测站进行了优化研究,开发了基于信息管理的农业监测站系统,进行了系统总体方案的设计,并引进数据库技术、传感器技术及通信技术等先进技术,完成了系统数据库设
农田土壤采样器可以通过对农田土壤的提取,对其温度、湿度和养分等指标参数情况进行分析,通过改善农作物的生长环境,来提高农作物的产量。为了实现土壤环境信息的实时监测,将多核DSP处理器和大数据分析技术引入到了农田土壤采样器的设计上,通过数据处理系统的改进使土壤采样器具有更快的数据采集、处理和传输速度,从而提高采样分析效率和分析的准确性。为了验证该方法的可行性,以土壤温度的实时监测为例,对土壤采样器进行了测试,并将数据传送到远程端。测试结果表明:土壤采样器可以成功地返回不同测量距离和深度的数据,可以满足土壤大数
以除草机器人为监测对象,首先介绍了 TCP/IP的原理及应用,然后基于嵌入式和TCP/IP技术,搭建了除草机器人远程监测系统总体及软硬件平台框架,并从硬件和软件两方面设计实现了
传统的旋耕作业主要以人工作业为主,作业人员的劳动强度大、工作效率低、耕作质量差,随着农业现代化的发展,其作业效率有了一定的提升,但大多数旋耕机采用的是交流电或蓄电池
为了提高采摘机器人目标追踪的效率和精度,在机器人视觉系统和控制系统的设计上引入了遗传迭代算法和模糊PID控制器,通过对图像处理过程和机械执行末端动作过程进行优化,可以得到更佳的采摘效果。在视觉系统对采摘图像进行处理时,可以通过遗传迭代算法对高质量图像进行筛选,并提高果实成熟度匹配的效率,果实识别后采用模糊PID控制算法对机器人执行末端进行控制,使其可以以更高的精度追踪到果实,执行采摘任务。
农业机器人作业时,为了提高机器人躲避障碍物及自主导航的效率和水平,将随机运动障碍物避碰规则引入到了农业机器人导航控制系统的设计中.采用人工势场算法对避障规则进行了
为了提高采摘机器人机械手果实的定位精度,降低果实采摘过程的破损率,将模糊算法和PID控制引入到了机械手控制系统的设计上,并采用PC上位机编程和嵌入式系统实现控制算法的运行。为了验证算法的可行性和可靠性,以果实采摘真实环境为测试环境,对机械手的定位精度和果实采摘的破损率进行了测试,结果表明:采用模糊PID算法可以明显提高机械手的果实定位精度,降低果实采摘的破损率,对采摘机器人控制系统的优化设计具有重要的参考价值。
针对现阶段农业生产过程中使用的农业信息采集技术方式单一及一种采集方式无法适应多种环境的问题,设计了一种可同时进行地面和空中农业信息采集的机器人.此机器人是将地面行
介绍了采摘机器人需求和系统总体框架,建立了采摘机器人运动模型和Simulink仿真平台,采用Simu-link仿真工具对采摘机器人进行了运动分析.仿真结果表明:采摘机器人可以根据障
为了提高农田土壤养分的分析效果,将GIS技术和采样机器人技术引入到了养分分析仪的设计中,利用采样机器人快速地对多个点进行采样,并将分析数据汇总;然后,利用GIS技术绘制出养分空间变异性分布图,将图像进行处理后可视化地呈现给远程管理端,农田管理人员根据养分分布情况合理地进行施肥。为了验证方案的可行性,对农田土壤进行了采样,并利用GIS技术绘制出了农田的养分分布图,结果表明:可视化呈现效果较好,可以为施肥管理人员提供可靠的数据支持。